noxer.base module
A set of abstract classes defining interfaces.
""" A set of abstract classes defining interfaces. """ class AugmentMixin(object): """Mixin class for augmentation of data in noxer.""" def fit_transform(self, X, Y, **fit_params): """Fit to data, then transform it. Fits transformer to X and Y with optional parameters fit_params and returns a transformed version of X and Y. Parameters ---------- X : array of shape [n_samples, ...] Training set. Y : array of shape [n_samples, ...] Target values. Returns ------- X_new : array of shape [n_samples, ...] Transformed array. Y_new : array of shape [n_samples, ...] Transformed outputs. """ return self.fit(X, Y, **fit_params).transform(X, Y)
Classes
class AugmentMixin
Mixin class for augmentation of data in noxer.
class AugmentMixin(object): """Mixin class for augmentation of data in noxer.""" def fit_transform(self, X, Y, **fit_params): """Fit to data, then transform it. Fits transformer to X and Y with optional parameters fit_params and returns a transformed version of X and Y. Parameters ---------- X : array of shape [n_samples, ...] Training set. Y : array of shape [n_samples, ...] Target values. Returns ------- X_new : array of shape [n_samples, ...] Transformed array. Y_new : array of shape [n_samples, ...] Transformed outputs. """ return self.fit(X, Y, **fit_params).transform(X, Y)
Ancestors (in MRO)
- AugmentMixin
- builtins.object
Static methods
def fit_transform(
self, X, Y, **fit_params)
Fit to data, then transform it.
Fits transformer to X and Y with optional parameters fit_params and returns a transformed version of X and Y.
Parameters
X : array of shape [n_samples, ...] Training set.
Y : array of shape [n_samples, ...] Target values.
Returns
X_new : array of shape [n_samples, ...] Transformed array.
Y_new : array of shape [n_samples, ...] Transformed outputs.
def fit_transform(self, X, Y, **fit_params): """Fit to data, then transform it. Fits transformer to X and Y with optional parameters fit_params and returns a transformed version of X and Y. Parameters ---------- X : array of shape [n_samples, ...] Training set. Y : array of shape [n_samples, ...] Target values. Returns ------- X_new : array of shape [n_samples, ...] Transformed array. Y_new : array of shape [n_samples, ...] Transformed outputs. """ return self.fit(X, Y, **fit_params).transform(X, Y)